Abstract
Two-dimensional transition-metal dichalcogenides possess inherent structural characteristics that can be harnessed for enhancement of tribological properties by making them dispersible in lube media. Here, we present a hydrothermal approach to preparing MoS2 nanosheets comprising 4-10 molecular lamellae. A structural-defect-mediated route for grafting of octadecylamine (ODA) on MoS2 nanosheets is outlined. The unsaturated d orbitals of Mo at the sulfur vacancies on the MoS2 surface are coupled with the electron-rich nitrogen center of ODA and yield ODA-functionalized MoS2 (MoS2-ODA). The MoS2-ODA nanosheets exhibit good dispersibility in lube base oil and are used as an additive (optimized dose: 0.1 mg·mL-1) to mineral oil. It is shown that even at low concentration, MoS2-ODA nanosheets significantly reduce the friction (48%) and wear (44%). Microscopy (field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM)) and spectroscopy (Raman and elemental mapping) analyses of worn scars revealed the formation of MoS2-based protective thin films for lowering of friction and wear. This work, therefore, presents a pathway for low-friction lubricants by deploying functionalized low-dimensional material systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.