Abstract

Abstract A generalized flexibility matrix-based objective function utilized for structure damage identification is firstly constructed. After transforming the damage identification into a constrained nonlinear least squares optimization problem, the trust-region algorithm is applied to find the solution of the inverse problem in multiple damage cases. Thereinto, the sensitivity analysis of the objective function with respect to the design variables is derived using the Nelson's method. At last, two numerical examples with several damage cases are investigated, including a steel truss bridge model as well as a drilling rig derrick model. Based on the computational results, it is evident that the presented approach provides excellent validity and reliability for the large and complicated engineering structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.