Abstract
Structural damage detection is very important for identifying and diagnosing the nature of the damage in an early stage so as to reduce catastrophic failures and prolong the service life of structures. In this paper, a novel approach is presented that integrates independent component analysis (ICA) and support vector machine (SVM). The procedure involves extracting independent components from measured sensor data through ICA and then using these signals as input data for a SVM classifier. The experiment presented employs the benchmark data from the University of British Columbia to examine the effectiveness of the method. Results showed that the accuracy of damage detection using the proposed method is significantly better than the approach by integrating ICA and ANN. Furthermore, the prediction output can be used to identify different types and levels of structure damages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.