Abstract

The macroscopic failure of composite materials is preceded by complex multilevel processes accompanied by accumulation and localization of damaged centers and formation of a failure cluster. Therefore, the study of these mechanisms is one of the basic problems for the mechanics of modern composite materials used in aerospace engineering. The formation of a theory of the stable postcritical deformation of the work-softening media is considered. The pseudo-plastic deformation affected by structural damage of granular composites is investigated within the framework of the considered two-level structurally phenomenological model of heterogeneous media. The stable evolution of the interconnected processes is accompanied by stress redistributions, partial or complete unloading, and strain or damage localization that are one of the main causes of implementation of the postcritical deformation stage. The numerical calculation results of inelastic deformation and failure of the periodic unidirectional fiber-reinforced composites are presented under conditions of the displacement-controlled transverse proportional loading mode. The main mechanisms of the work-softening behavior for the indicated type of materials are described in the macro-homogeneous stress-strain states. Macroscopically, the failure of heterogeneous media as a result of postcritical deformation and the loss of stability of damage accumulation depends on the stiffness of the loading system. When a deformable body is fixed on the closed surface with sufficiently but not infinitely large coefficients of stiffness, it is possible to observe the equilibrium development of the localized volumes of work-softening and damage. The constitutive equations for the work-softening isotropic, transverse isotropic, and orthotropic media are presented. The effect of the loading system on the stability of deformation, damage accumulation, and failure under monotone and nonmonotone triaxial loading was studied. The growth of failure strains with increase in stiffness of the loading system and unequal resistance of heterogeneous body are registered and investigated. A preventive unloading method is offered for the mathematical modeling of the damage accumulation during the testing of the materials on the servo-controlled systems. The displacement-controlled mode is simulated by a series of soft loading and unloading cycles. The detected phenomenon of failure where the unloading leads to stress-strain diagrams with a negative slope of the descending branch was not found either in the displacement or stress-controlled monotone loading mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.