Abstract

Structural correlations between colloids in a binary mixture of charged and neutral spheres are calculated using computer simulations of the primitive model with explicit microions. For aqueous suspensions in a solvent of large dielectric constant, the traditional Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of linear screening, supplemented with hard core interactions, reproduces the structural correlations obtained in the full primitive model quantitatively. However, for lower dielectric contrast, the increasing Coulomb coupling between the counterions and charged colloids results in strong deviations. We find a fluid-fluid phase separation into two regions either rich in charged or rich in neutral colloids, which is not reproduced by DLVO theory. Our results are verifiable in scattering or real-space experiments on charged-neutral mixtures of colloids or nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.