Abstract

Dystrophin is a member of the spectrin family of proteins, which are characterized as being predominantly composed the spectrin-type-repeat, a triple α-helical bundle motif present in multiple tandem copies, producing a rod-like shape. Whether or not this motif, which is determined by sequence homology, is correlated with biophysical domains in the intact protein is uncertain. The nature of the domain structure impacts the flexibility and shape of the rod region of this protein, which is a target for modification in several therapeutic approaches aimed at Duchenne Muscular Dystrophy, a common and fatal genetic disease caused by defective dystrophin. We examined three such motifs in dystrophin, expressing them recombinantly both singly and in tandem, and studying their thermodynamic properties by solvent and thermal denaturation. We have found that the degree to which they are independently stable and expressible varies considerably. The fourth motif appears to be largely stable and independent, whereas the third and second motifs interact strongly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call