Abstract

The lignin biosynthetic pathway in Eucalyptus camaldulensis was investigated by feeding stems with deuterium-labeled precursor. Pentadeutero[γ,γ-D2 OCD3] coniferyl alcohol was synthesized and supplied to shoots of E. camaldulensis, and incorporation of the labeled precursor into lignin was traced by gas chromatography-mass spectrometry. In addition to the direct incorporation of labeled precursor into the guaiacyl unit, a pentadeuterium-labeled syringyl unit was detected. This finding indicates that the γ-deuterium atoms in the hydroxymethyl group of labeled coniferyl alcohol remain intact during modification of the aromatic ring. The relative level of trideuterium-labeled syringyl monomer (the result of conversion via the cinnamic acid pathway) was negligible, suggesting that the pathway at the monolignol stage is used for conversion of exogenously supplied precursor. Our results provide conclusive evidence of a novel alternative pathway for generation of lignin subunits at the monolignol stage even in plants that do not accumulate coniferin in lignifying tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.