Abstract

This study focuses on hydrothermal alteration in the geothermal reservoir of Cerro Pabellón (Andean Cordillera, Northern Chile). It is based on CP2A and CP5A production wells drilled above a local normal fault and presenting unlike hydraulic properties. Cuttings from 300 to 1555 m depth were sampled and analyzed using X-ray diffraction (XRD) to observe distribution of hydrothermal minerals and crystal chemistry variations of clays (fraction < 5 μm). Then, scanning electron microscopy coupled with energy dispersive spectroscopy (SEM–EDX) allowed to perform microanalysis of hydrothermal minerals. These results highlight a mineral assemblage that was not observed before, composed of adularia + Ba-rich feldspar + feathery quartz + chalcedony + calcium arsenates + illite. They are characteristics of high-temperature hydrothermal alteration in epithermal settings and are restricted to shallow permeable fracture zones of the active part of the reservoir. Another fracture-controlled event related to a typical illitization is observed in all permeable fracture and fault zones of the geothermal system. This multi-event alteration seems strongly controlled by the eastern graben fault and the associated interconnected fracture network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call