Abstract
Abstract In order to better understand the mechanisms of lithium dynamics and to elucidate the influence of defects in lithium mobility, we have studied the Li-ion propagation through natural single crystals of α-spodumene, LiAlSi2O6 and petalite, LiAlSi4O10 using impedance spectroscopy. Electrical conductivity in petalite and α-spodumene is 4–5 orders of magnitude lower than in glasses of the same composition, and three orders of magnitude lower than in synthetic β-spodumene. Conductivity in α-spodumene is anisotropic with conductivity along the c-axis being 0.3–0.4 log units higher than perpendicular to the c-axis. Contrary to α-spodumene, isotropic conductivity was observed for petalite single crystals. Despite the large difference in conductivity values, the activation energies for ionic conduction of α-spodumene along the c-axis (74 to 86 kJ/mol) are only slightly higher than for LiAlSi2O6 and LiAlSi4O10 glasses (∼67 kJ/mol). On the other hand, much higher activation energies of 112–134 kJ/mol were determined for petalite. Based on our investigation, a vacancy-controlled transport mechanism is indicated for the densely packed α-spodumene structure, while in the open framework structure of petalite formation and movement of Li interstitials is proposed to be dominant mechanism for charge transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.