Abstract

Abstract Cooling subvolcanic igneous intrusions are known to have a tremendous impact on fluid flow in the shallow Earth's crust. However, the long-term post-cooling legacy of subvolcanic intrusions on fluid flow has received much less attention. Here we describe geological examples in the Andean foothills, Argentina, showing that igneous intrusions have long-term effects on fluid flow after their emplacement and cooling. The case study consists of ∼11 Myr-old eroded andesitic intrusions of Cerro Alquitrán and Cerro La Paloma, northern Neuquén Basin, Argentina, at the rims of which large volumes of bitumen are naturally seeping out at the Earth's surface. The intrusions exhibit laccolithic shapes with steep-sided contacts with the host rock. Near the intrusive contacts, the andesite is intensely broken along concentric breccia bands and fracture bands, interpreted as resulting from syn-emplacement brittle magma deformation, which represent high-permeability pathways for the migrating bitumen. Organic geochemical analyses of the bitumen show that the seeping oils were generated from incipiently mature Vaca Muerta sections located in a regional kitchen to the west, implying a lateral migration of ∼10–20 km. The Cerro Alquitrán and Cerro La Paloma intrusions are demonstrative examples highlighting how extinct subvolcanic intrusions have long-term consequences for subsurface fluid circulations in sedimentary basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call