Abstract
AbstractPolystyrene microcapsules possessing a large single core and highly microporous wall were prepared as immobilization supports for microbial cells by a new method based on phase separation of polystyrene within a mixed organic solvent system in an oil‐in‐water (o/w) emulsion. The structures of core and micropore were controlled by changing the concentration of isooctane in the organic phase and the temperature of solvent evaporation. The immobilization of baker's yeast into the polystyrene microcapsules was carried out by entrapping the yeast into calcium alginate beads before encapsulating in the microcapsules and followed by removing the beads with HCl solution. The morphology of the microcapsules was observed by means of SEM, and the activity of the immobilized yeast was evaluated by using the microcapsules in ethanol fermentation. It was found that the formation of the core and wall pore was remarkably influenced by the isooctane concentration, and the diameter of the core was affected by the temperature of solvent evaporation. The yeast was successfully immobilized into the polystyrene microcapsules at a high density and a high catalyst activity by the proposed immobilization method. Furthermore, the polystyrene microcapsules exhibited a high operational stability in the repeated batchwise fermentation test. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1966–1975, 2003
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.