Abstract

A variety of characterization techniques have been employed to study the growth and structure of carbon nickel thin films fabricated by ionised magnetron sputter deposition. A two target magnetron system is used along with an RF powered coil to create a secondary plasma, with a DC bias applied at the substrate. By varying the substrate bias it is possible to control the flux and energy of the depositing species and therefore the resulting film microstructure. Films typically consist of nickel-based nano-particles within a carbon matrix. It has been observed that a change between the metastable hexagonal structure of nickel and the stable face centred cubic phase can be induced. This change in metal crystallinity is accompanied by a change in carbon ordering. The ability to control the film structure and morphology without the need for post-deposition heat treatments opens up the possibility of depositing a range of structures onto temperature sensitive substrates such as polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.