Abstract
The multiformity in polymer structure and conformation design provides a great potential in improving the gene silencing efficiency of siRNA by polymer vectors. In order to provide information on the polymer design for siRNA delivery, the structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles (NPs) in siRNA delivery were studied. Herein, two kinds of self-assembly nanoparticles (NPs) formed by amphiphilic cationic polymers, methoxy poly(ethylene glycol)-block-polycaprolactone-block-poly(2-dimethylaminoethyl methacrylate) (mPEG-PCL- b-PDMAEMA, PEC bD) and methoxy poly(ethylene glycol)-block-(polycaprolactone-graft-poly(2-dimethylaminoethyl methacrylate)) (mPEG-PCL- g-PDMAEMA, PEC gD), were used to deliver siRNA for in vitro and in vivo studies. The physiochemical properties including size and zeta potential of PEC bD NPs/siRNA and PEC gD NPs/siRNA complexes were characterized. In vitro cytotoxicity, cellular uptake and siRNA knockdown efficiency were evaluated in HeLa-Luc cells. The endosome escape and intracellular distribution of PEC bD NPs/siRNA and PEC gD NPs/siRNA in HeLa-Luc cells were also observed. In vivo polymer mediated siRNA delivery and the complexes distribution in isolated organs were studied using mice and tumor-bearing mice. At the same total degree of polymerization (DP) of DMAEMA, PEC gD NPs/siRNA complexes possessed higher zeta potentials than PEC bD NPs/siRNA complexes (at the same N/P ratio), which may be the reason that PEC gD NPs/siRNA complexes can deliver more siRNA into the cytoplasm and lead to higher in vitro luciferase and lamin A/C silencing efficiency than PEC bD NPs/siRNA complexes. The in vivo imaging measurement and histochemical analysis also confirmed that siRNA could be delivered to lungs, livers, pancreas and HeLa-Luc tumors more efficiently by PEC gD NPs than PEC bD NPs. Meanwhile, the PDMAEMA chains of PEC gD could be shortened which provides benefits for clearing. Therefore, PEC gD NPs have great potential to be used as efficient non-viral carriers for in vivo siRNA delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.