Abstract

8-Oxo-7,8-dihydroguanine (OG) is the most common base damage found in cells, where it resides in many structural contexts, including the nucleotide pool, single-stranded DNA at transcription forks and replication bubbles, and duplex DNA base-paired with either adenine (A) or cytosine (C). OG is prone to further oxidation to the highly mutagenic hydantoin products spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in a sharply pH-dependent fashion within nucleosides. In the present work, studies were conducted to determine how the structural context affects OG oxidation to the hydantoins. These studies revealed a trend in which the Sp yield was greatest in unencumbered contexts, such as nucleosides, while the Gh yield increased in oligodeoxynucleotide (ODN) contexts or at reduced pH. Oxidation of oligomers containing hydrogen-bond modulators (2,6-diaminopurine, N(4)-ethylcytidine) or alteration of the reaction conditions (pH, temperature, and salt) identify base stacking, electrostatics, and base pairing as the drivers of the key intermediate 5-hydroxy-8-oxo-7,8-dihydroguanine (5-HO-OG) partitioning along the two hydantoin pathways, allowing us to propose a mechanism for the observed base-pairing effects. Moreover, these structural effects cause an increase in the effective pK(a) of 5-HO-OG, following an increasing trend from 5.7 in nucleosides to 7.7 in a duplex bearing an OG·C base pair, which supports the context-dependent product yields. The high yield of Gh in ODNs underscores the importance of further study on this lesion. The structural context of OG also determined its relative reactivity toward oxidation, for which the OG·A base pair is ~2.5-fold more reactive than an OG·C base pair, and with the weak one-electron oxidant ferricyanide, the OG nucleoside reactivity is >6000-fold greater than that of OG·C in a duplex, leading to the conclusion that OG in the nucleoside pool should act as a protective agent for OG in the genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call