Abstract

A theoretical framework is outlined, according to which structural constraints on bimanual movements can at least in part be understood as coupling between parameters of generalized motor programs. This framework provides a conceptual link between reaction-time data from experiments with bimanual responses, successive unimanual responses, and choice between left-hand and right-hand responses on the one hand and performance data obtained with concurrently performed continuous movements or sequences of discrete responses on the other. On the basis of data obtained with different methods for the study of intermanual interactions, a distinction is drawn between steady-state and transient constraints, and the hypothesis that the tendency to coactivate homologous muscles originates from a transient coupling of program parameters is applied to a variety of observations on performance in different tasks. Finally, the notion of transient constraints is applied to other types of intermanual interdependencies, and to interpersonal coordination; the possible emergence of transient constraints from steady-state constraints through progressive development of inhibitory pathways in childhood is discussed, as is the potential biological significance of transient constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call