Abstract
The structural, conformational, and configurational properties of 1,1,1-Trifluoro-N-(1,1,2,2,2-pentafluoroethyl) methanesulfinimidoyl chloride, CF3CF2NS(Cl)CF3 have been studied by vibrational spectroscopy [IR (vapor) and Raman (liquid)] and quantum chemical calculations [B3LYP, MP2 and B3PW91 levels of theory using the 6-311+G(d), 6-311+G(df) and 6-311+G(2df) basis sets]. According to these theoretical approximations, CF3CF2NS(Cl)CF3 exists in the gas phase as a mixture of a favored anticlinal form (CN bond anticlinal with respect to the CSCl bisector) with C1 symmetry and a less abundant syn conformer showing C1 symmetry as well (ΔG°≈1.20kcalmol−1). Due to the small contribution only a few corresponding vibrational modes of the syn conformer could be assigned confidently in the experimental spectra. Compared to CF3CF2NS(F)CF3, the replacement of F by Cl produces a clear change in NS bond length and the corresponding stretching frequency, without affecting the conformational properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.