Abstract

Commercial vanilla ice cream products from the United States (full fat, low fat, and nonfat) were analyzed for their structural, behavioral (i.e., melt rate and drip-through), compositional, and sensorial attributes. Mean size distributions of ice crystals and air cells, drip-through rates, percent partially coalesced fat, percent overrun and total fat, and density were determined. A trained panel carried out sensory analyses in order to determine correlations between ice cream microstructure attributes and sensory properties using a Spectrum(TM) descriptive analysis. Analyses included melt rate, breakdown, size of ice particulates (iciness), denseness, greasiness, and overall creaminess. To determine relationships and interactions, principle component analysis and multivariate pairwise correlation were performed within and between the instrumental and sensorial data. Greasiness and creaminess negatively correlated with drip-through rate and creaminess correlated with percent total fat and percent fat destabilization. Percent fat did not determine the melt rate on a sensorial level. However, drip-through rate at ambient temperatures was predicted by total fat content of the samples. Based on sensory analysis, high-fat products were noted to be creamier than low and nonfat products. Iciness did not correlate with mean ice crystal size and drip-through rate did not predict sensory melt rate. Furthermore, on a sensorial level, greasiness positively correlated with total percent fat destabilization and mean air cell size positively correlated with denseness. These results indicate that commercial ice cream products vary widely in composition, structure, behavior, and sensory properties. There is a wide range of commercial ice creams in the United States market, ranging from full fat to nonfat. In this research we showed that these ice creams vary greatly in their microstructures, behaviors (the melt/drip-though, collapse, and/or stand up properties of ice cream products at ambient temperatures), and sensory properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.