Abstract

Investigation of highly oxidized graphene oxide (GO) by solid-state nuclear magnetic resonance (NMR) spectroscopy has revealed an exceptional level of hitherto undiscovered structural complexity. A number of chemical moieties were observed for the first time, such as terminal esters, furanic carbons, phenolic carbons, and three distinct aromatic and two distinct alkoxy carbon moieties. Quantitative one-dimensional (1D) and two-dimensional (2D) 13C{1H} NMR spectroscopy established the relative populations and connectivity of these different moieties to provide a consistent "local" chemical structure model. An inferred 2 nm GO sheet size from a very large (∼20%) edge carbon fraction by NMR analysis is at odds with the >20 nm sheet size determined from microscopy and dynamic light scattering. A proposed kirigami model where extensive internal cuts/tears in the basal plane provide the necessary edge sites is presented as a resolution to these divergent results. We expect this work to expand the fundamental understanding of this complex material and enable greater control of the GO structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call