Abstract
Malate dehydrogenase (MDH), which catalyzes a reversible conversion of L-malate to oxaloacetate, plays essential roles in common metabolic processes, such as the tricarboxylic acid cycle, the oxaloacetate–malate shuttle, and the glyoxylate cycle. MDH2 has lately been recognized as a promising anticancer target; however, the structural information for the human homologue with natural ligands is very limited. In this study, various complex structures of hMDH2, with its substrates and/or cofactors, were solved by X-ray crystallography, which could offer knowledge about the molecular and enzymatic mechanism of this enzyme and be utilized to design novel inhibitors. The structural comparison suggests that phosphate binds to the substrate binding site and brings the conformational change of the active loop to a closed state, which can secure the substate and cofactor to facilitate enzymatic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.