Abstract

Compared with conventional textile coloring with dyes and pigments, structural colored fabrics have attracted broad attention due to the advantages of eco-friendliness, brilliant colors, and anti-fading properties. The most investigated structural color on fabrics is originated from a band gap of multilayered photonic crystals or amorphous photonic structures. However, limited by the nature of the color generation mechanism and a multilayered structure, it is challenging to achieve structural colored fabrics with brilliant noniridescent colors and high fastness. Here, we propose an alternative strategy for coloring a fabric based on the scattering of Cu2O single-crystal spheres. The disordered Cu2O thin layers (<0.6 μm) on the surface of fabrics were prepared by a spraying method, which can generate vivid noniridescent structural color due to the strong Mie scattering of Cu2O single-crystal spheres. Importantly, the great mechanical stability of the structural color was realized by firmly binding Cu2O spheres to the fabric using a commercial binder. The structural color can be tuned by changing the diameter of Cu2O spheres. Furthermore, complex patterns can be easily obtained by spray coating Cu2O spheres with different particle sizes using a mask. According to color fastness test standards, the dry rubbing, wet rubbing, and light fastness of the structural color on fabric can reach level 5, level 4, and level 6, respectively, which is sufficient to resist rubbing, photobleaching, washing, rinsing, kneading, stretching, and other external mechanical forces. This coloring method may carve a practical avenue in textile coloring and has potentials in other practical applications of structural color.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.