Abstract

The objective of this paper is to present a geometrical nonlinear and interlaminar progressive failure finite element analysis of a generic wind turbine blade undergoing a static flap-wise load and comparisons with experimental findings. It is found that the predictive numerical models show excellent correlation with the experimental findings and observations in the pre-instability response. Consequently, the ultimate strength of the wind turbine blade studied is governed by a delamination and buckling coupled phenomenon, which results in a chain of events and sudden structural collapse with compressive fibre failure in the delaminated flange material. Finally, a parametric study of the critical load factors with respect to various delamination sizes and positions inside the compressive flange of the wind turbine blade is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.