Abstract

We investigate here the internal structure of zinc ferrite nanoparticles designed and prepared by a soft chemistry method to elaborate magnetic nanocolloids. The strategy used to avoid acid dissolution modifies the chemical composition of the surface of the nanoparticles, which are described as a core of stoichiometric zinc ferrite surrounded by a maghemite shell. Measurements of X-ray absorption near-edge spectroscopy, extended X-ray absorption fine structure, and X-ray diffraction are undertaken to investigate the local structure of nontreated nanocrystals and of surface-treated ones as a function of their sizes. The qualitative analysis of X-ray absorption results indicates a nonequilibrium cation distribution among the interstitial sites of the zinc ferrite nanocrystals core. Ab-initio calculations of theoretical photoelectron backscattering phases and amplitudes give, by fitting Fourier transformed EXAFS data at both Zn and Fe K-edges, an average inversion degree of 0.34. This value well matches the result of Rietveld refinement of X-ray diffraction data. Magnetization measurements performed on dilute aqueous nanocrystal dispersions, liquid at room temperature and frozen at low temperatures, are carried out in order to test the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.