Abstract
Li2B12H12, Na2B12H12, and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li- and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li2B12H12 and Na2B12H12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsic frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric s...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.