Abstract

Rare earth-doped bioactive ceramics are promising biomaterials due to their unique optical properties, biocompatibility, antioxidants, and antibacterial activity. In this study, a series of SiO2-CaO-Er2O3 nanofiber mats were fabricated by sol-gel electrospinning. The morphology, flexibility, physicochemical and biological properties of the nanofibers were investigated. The flexibility of the nanofiber mats containing 5 and 10 wt% of Er2O3 was better than that of samples without or with >10 wt% Er2O3. The chemical property assay indicated that addition of Er can lead to changes in the degree of crystallinity and the degree of silica network polymerization, which further affect the flexibility. Photoluminescent spectra showed that the Er-doped nanofibers exist green and near infrared emissions. The in vitro bio experiments demonstrated that Er-doped nanofibers present excellent biocompatibility, and the mineralization experiment demonstrated that Er-doped nanofibers present favorable mineralization activity. Therefore, these SiO2-CaO-Er2O3 flexible nanofibers may be promising candidates for biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.