Abstract

UV-stimulated scaffold protein A (UVSSA) is a key protein in the Transcription-Coupled Nucleotide Excision Repair (TC-NER) pathway. UVSSA, an intrinsically disordered protein, interacts with multiple members of the pathway, tethering them into the complex. Several studies have reported that UVSSA recruits Transcription Factor IIH (TFIIH) via direct interaction, following which CSB is degraded and the lesion recognition TC-NER complex dissociates from the damage site to facilitate the DNA repair. Structural insights into these events remain largely unknown. Herein, we have investigated the interaction of human UVSSA with the Pleckstrin-Homology-domain of p62 subunit of TFIIH (p62-PHD) using biophysical techniques. We observed that UVSSA forms a stable complex with the p62-PHD in vitro. Small-angle scattering measurements using X-rays and neutrons revealed a significant change in pair-distance distribution function for UVSSA662/p62-PHD complex compared to UVSSA alone. Additionally, a significant decrease was observed in the radius of gyration of the complex. Our findings suggest that TFIIH binding to UVSSA causes significant conformational changes in UVSSA. We hypothesize that these conformational changes play an important role in the dissociation of the lesion recognition TC-NER complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call