Abstract
Folding stability is a crucial feature of protein evolution and is essential for protein functions. Thus, the comprehension of protein folding mechanisms represents an important complement to protein structure and function, crucial to determine the structural basis of protein misfolding. In this context, thermal unfolding studies represent a useful tool to get a molecular description of the conformational transitions governing the folding/unfolding equilibrium of a given protein. Here, we report the thermal folding/unfolding pathway of VEGFR1D2, a member of the immunoglobulin superfamily by means of a high‐resolution thermodynamic approach that combines differential scanning calorimetry with atomic‐level unfolding monitored by NMR. We show how VEGFR1D2 folding is driven by an oxidatively induced disulfide pairing: the key event in the achievement of its functional structure is the formation of a small hydrophobic core that surrounds a disulfide bridge. Such a ‘folding nucleus’ induces the cooperative transition to the properly folded conformation supporting the hypothesis that a disulfide bond can act as a folding nucleus that eases the folding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.