Abstract

Urease activation is critical to the virulence of many human and animal pathogens. Urease possesses multiple, nickel-containing active sites, and UreE, the only nickel-binding protein among the urease accessory proteins, activates urease by transporting nickel ions. We performed NMR experiments to investigate the solution structure and the nickel-binding properties of Bacillus pasteurii (Bp) UreE. The secondary structures and global folds of BpUreE were determined for its metal-free and nickel-bound forms. The results indicated that no major structural change of BpUreE arises from the nickel binding. In addition to the previously identified nickel-binding site (Gly(97)-Cys(103)), the C-terminal tail region (Lys(141)-His(147)) was confirmed for the first time to be involved in the nickel binding. The C-terminally conserved sequence ((144)GHQH(147)) was confirmed to have an inherent nickel-binding ability. Nickel addition to 1.6 mm subunit, a concentration where BpUreE predominantly forms a tetramer upon the nickel binding, induced a biphasic spectral change consistent with binding of up to at least three nickel ions per tetrameric unit. In contrast, nickel addition to 0.1 mm subunit, a concentration at which the protein is primarily a dimer, caused a monophasic spectral change consistent with more than 1 equivalent per dimeric unit. Combined with the equilibrium dialysis results, which indicated 2.5 nickel equivalents binding per dimer at a micromolar protein concentration, the nickel-binding stoichiometry of BpUreE at a physiological concentration could be three nickel ions per dimer. Altogether, the present results provide the first detailed structural data concerning the nickel-binding properties of intact, wild-type BpUreE in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.