Abstract

The Zika virus (ZIKV) NS2B-NS3 protease is an important drug target. The conventional flaviviral protease constructs used for structural studies contain the NS2B cofactor region linked to the NS3 protease domain via a glycine-rich flexible linker. Here, we examined the structural dynamics of this conventional Zika protease (gZiPro) using NMR spectroscopy. Although the glycine-rich linker in gZiPro does not alter the overall folding of the protease in solution, gZiPro is not homogenous in ion exchange chromatography. Compared to the unlinked protease construct, the artificial linker affects the chemical environment of many residues including H51 in the catalytic triad. Our study provides a direct comparison of ZIKV protease constructs with and without an artificial linker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.