Abstract

A critical point of interaction between F(1) and F(0) in the bacterial F(1)F(0)-ATP synthase is formed by the alpha and delta subunits. Previous work has shown that the N-terminal domain (residues 3-105) of the delta subunit forms a 6 alpha-helix bundle [Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F. W., and Capaldi, R. A. (1997) Nat. Struct. Biol. 4, 198-201] and that the majority of the binding energy between delta and F(1) is provided by the interaction between the N-terminal 22 residues of the alpha- and N-terminal domain of the delta subunit [Weber, J., Muharemagic, A., Wilke-Mounts, S., and Senior, A. E. (2003) J. Biol. Chem. 278, 13623-13626]. We have now analyzed a 1:1 complex of the delta-subunit N-terminal domain and a peptide comprising the N-terminal 22 residues of the alpha subunit by heteronuclear protein NMR spectroscopy. A comparison of the chemical-shift values of delta-subunit residues with and without alpha N-terminal peptide bound indicates that the binding interface on the N-terminal domain of the delta subunit is formed by alpha helices I and V. NOE cross-peak patterns in 2D (12)C/(12)C-filtered NOESY spectra of the (13)C-labeled delta-subunit N-terminal domain in complex with unlabeled peptide verify that residues 8-18 in the alpha-subunit N-terminal peptide are folded as an alpha helix when bound to delta N-terminal domain. On the basis of intermolecular contacts observed in (12)C/(13)C-filtered NOESY experiments, we describe structural details of the interaction of the delta-subunit N-terminal domain with the alpha-subunit N-terminal alpha helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.