Abstract
ZAS3 is a large zinc finger protein that regulates κB-mediated transcription and TNF-driven signal transduction pathway. Herein, we have characterized the mouse ZAS3 gene that spans 400 kb and splits into 16 exons. Four ZAS3 exons, ranging from 676 to 3956 nucleotides, are significantly larger than the average size of mammalian internal exons. Intron 10, when retained in mRNAs, encodes N-terminal DNA binding domain, called ZASN. As predicted from cDNAs, 5′ untranslated region composed of the 2317 nucleotides is extremely long and contains upstream open reading frames, suggesting that translation initiation of ZAS3 transcripts by conventional cap-dependent ribosome scanning mechanism may be inefficient. Additionally, cDNA data analysis followed by reporter gene assays shows that the ZAS3 locus harbors two promoters that are 80 kb apart. The data suggest that the expression of ZAS3 is controlled by a combination of differential promoter usage, alternative splicing, and possible intergenic splicing. The distribution and degree of conservation of exons within the ZAS3 locus, together with the complex alternative splicing events and upstream open reading frame in 5′ untranslated exons, lead us to speculate that multiple promoters of an eukaryotic gene might be residual traces of regulatory regions of other genes lost in evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.