Abstract

ADAMs (a disintegrin and metalloproteinases) are a family of multidomain transmembrane glycoproteins with diverse roles in physiology and diseases, with several members being drug targets for cancer and inflammation therapies. The spatial organization of the ADAM extracellular segment and its influence on the function of ADAMs have been unclear. Although most members of the ADAM family are active zinc metalloproteinases, 8 of 21 ADAMs lack functional metalloproteinase domains and are implicated in protein-protein interactions instead of membrane protein ectodomain shedding. One of such non-proteinase ADAMs, ADAM22, acts as a receptor on the surface of the postsynaptic neuron to regulate synaptic signal transmission. The crystal structure of the full ectodomain of mature human ADAM22 shows that it is a compact four-leaf clover with the metalloproteinase-like domain held in the concave face of a rigid module formed by the disintegrin, cysteine-rich, and epidermal growth factor-like domains. The loss of metalloproteinase activity is ensured by the absence of critical catalytic residues, the filling of the substrate groove, and the steric hindrance by the cysteine-rich domain. The structure, combined with calorimetric experiments, suggests distinct roles of three putative calcium ions bound to ADAM22, with one in the metalloproteinase-like domain being regulatory and two in the disintegrin domain being structural. The metalloproteinase-like domain contacts the rest of ADAM22 with discontinuous, hydrophilic, and poorly complemented interactions, suggesting the possibility of modular movement of ADAM22 and other ADAMs. The ADAM22 structure provides a framework for understanding how different ADAMs exert their adhesive function and shedding activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.