Abstract

Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. Suppressor lipids were isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization of their fragmentation pathways. Tandem mass analysis identified the positionally defined molecular lipid species phosphatidylinositol (PI) 26:0/16:1, PI mannoside (PIM) 16:0/26:0 and PIM inositol-phosphate (PIMIP) 16:0/26:0 as abundant suppressor lipids. This finding differs from the original study that only inferred the positional isomer PI 16:0/26:0 and prompts new insight into the biosynthesis of suppressor lipids. Moreover, we also report the identification of a novel suppressor lipid featuring an amino sugar residue linked to a VLCFA-containing PI molecule. Fragmentation pathways of yeast suppressor lipids have been delineated. In addition, the fragmentation information has been added to our open source ALEX lipid database to support automated identification and quantitative monitoring of suppressor lipids in yeast and bacteria that produce similar lipid molecules. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.