Abstract

ABSTRACTIn this paper, we present a comprehensive study of microcrystalline silicon thin film samples deposited by a novel growth process intended to maximize their grain size and crystal volume fraction. Using Atomic Force Microscopy, Raman spectroscopy, and x ray diffraction the structural properties of these samples were characterized qualitatively and quantitatively. Samples were grown using a Hot-Wire Chemical Vapor Deposition process with or without a post-growth hot-wire annealing treatment. During Hot-Wire Chemical Vapor Deposition, SiF4 is used along with SiH4 and H2 to grow the thin films. After growth, some samples received an annealing treatment with only SiF4 and H2 present. These samples were compared to each other in order to determine the deposition conditions that maximize grain size. Large microcrystalline grains were found to be aggregates of much smaller crystallites whose size is nearly independent of deposition type and post-annealing treatment. Thin films deposited using the deposition process with SiF4 partial flow rate of 2 sccm and post-growth annealing treatment had the largest aggregate grains ∼.5 µm and relatively high crystal volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.