Abstract
To obtain the structure–function relationship of the polysaccharides derived from areca (Areca catechu L.) inflorescences in the aspect of its immunomodulatory ability, the plant-based polysaccharide was isolated and purified on column chromatography. The purity, primary structure and immune activity of four polysaccharide fractions (AFP, AFP1, AFP2 and AFP2a) were characterized comprehensively. The main chain of AFP2a was confirmed to be composed of → 3,6)-β-D-Galp-(1→, with branch chains linked to the O-3 position on the main chain. The immunomodulatory activity of the polysaccharides was evaluated using the RAW264.7 cells and immunosuppression mice model. It was observed that AFP2a enabled greater NO release (49.72 μmol/L) than other fractions, significantly promoted the phagocytic activity of macrophages, and improved splenocyte proliferation and T lymphocyte phenotype in mice. The present results may shine a light on a new research direction in immunoenhancers and provide a theoretical foundation for the development and application of areca inflorescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.