Abstract
The drug substance, acalabrutinib was subjected to hydrolytic (acid, base and neutral) and oxidative stress degradation as per ICH recommendations. Degradation products (DPs) generated from the drug substance were separated on a Shimadzu Shim-pak C-8 column utilizing a mobile phase composed of methanol: acetonitrile (90:10 v/v) and ammonium acetate buffer (10 mM, pH 3.80) in a gradient elution mode. Acalabrutinib was found to be labile under acid, basic, neutral and oxidative conditions. A total of eighteen DPs of drug substance were formed in hydrolytic (fourteen DPs) and oxidative degradation conditions (four DPs). All the DPs were characterized by comparing the LC-Q-TOF mass spectrometric fragmentation pathway of the drug substance with DPs. Further, hydrogen/deuterium (H/D) exchange studies were also carried out on the DPs to confirm the presence of labile hydrogens in their structures. Four DPs (H-12, O-2, O-3 and O-4) were isolated for chemical structural elucidation by NMR. Probable mechanisms involved in degradation of acalabrutinib were also postulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.