Abstract

The low glass-forming ability of aluminium-based metallic glasses significantly limits their development and preparation. This paper updates the current state of knowledge by presenting the results of structural studies of two newly-developed Al79Ni5Fe5Y11 and Al79Ni11Fe5Y5 alloys with a reduced aluminium content (< 80 at.%). The alloys were produced by conventional casting (ingots) and melt-spinning (ribbons). Structural characterization was carried out for bulk ingots first, and then for the melt-spun ribbons. The ingots possessed a multiphase crystalline structure, as confirmed by X-ray diffraction and scanning electron microscopy observations. The amorphous structure of the melt-spun ribbons was determined by X-ray diffraction and transmission electron microscopy. SEM observations and EDX element maps of the cross-section of melt-spun ribbons indicated a homogeneous elemental composition. Neutron diffraction revealed the presence of nanocrystals in the amorphous matrix of the melt-spun ribbons. DSC data of the melt-spun ribbons showed exothermic events corresponding to the first crystallization at temperatures of 408 °C and 387 °C for Al79Ni5Fe5Y11 and Al79Ni11Fe5Y5, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call