Abstract
Spectroscopic and spectrofluorimetric techniques have been employed to investigate the structure of the charge transfer (CT) complexes of Trimethoprim (TMP) and Cimitidine (CTD) drugs with 2,3,5,6-tetrachloro-1,4-benzoquinone ( p-chloranil, p-CHL). The stoichiometry of the complexes was found to be 1:2 for TMP- p-CHL system and 1:1 for CTD- p-CHL system. The thermodynamic results indicated that the formation of molecular complex between the donors and the acceptor is spontaneous and endothermic. The results of electronic spectral studies indicated that the formation constant for CTD- p-CHL system is found to be higher than that for TMP- p-CHL system. The observation is well supported by the results of fluorescence quenching studies and the association constants calculated for CTD- p-CHL system is 36.2 × 10 3 mol L −1 and that for TMP- p-CHL system is 2.6 × 10 3 mol L −1. The kinetic results, in both the cases, indicated that the interaction is first order each with respect to the concentration of the donor and the acceptor. The physico-chemical parameters viz. oscillator strength, dipole moment, ionization potential and dissociation energy of the complexes were also determined and discussed. Structural characterization of the complexes were done using FT-IR and 1H NMR spectral techniques and the results indicated that, in TMP, the free NH 2 group while in CTD the pyrazole N H moiety involves in complexation with the acceptor, p-CHL.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.