Abstract

Bio-phenol formaldehyde (BPF) resole resins were characterized by liquid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy. The liquid 13C NMR analysis indicated that the condensation reactions between the bark phenolic compounds and the formaldehyde occurred during the synthesis of the resins. Methylene ether bridges in the resins were more pronounced in the BPF resin when compared to the PF resin system. The liquid-state 13C NMR study revealed significant differences in the resins structures induced by the inclusion of bark-phenolic components. The bark-phenolic components favored the formation of para-ortho methylene linkages in the BPF resins and also enhanced the cure rate of the BPF resin system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call