Abstract
Bio-phenol formaldehyde (BPF) resole resins were characterized by liquid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy. The liquid 13C NMR analysis indicated that the condensation reactions between the bark phenolic compounds and the formaldehyde occurred during the synthesis of the resins. Methylene ether bridges in the resins were more pronounced in the BPF resin when compared to the PF resin system. The liquid-state 13C NMR study revealed significant differences in the resins structures induced by the inclusion of bark-phenolic components. The bark-phenolic components favored the formation of para-ortho methylene linkages in the BPF resins and also enhanced the cure rate of the BPF resin system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.