Abstract

Abstract“Row nucleated lamellar” structures are formed when highly crystalline polymers are melt‐extruded and recrystallized under high stress. Polyethylene (PE) and polypropylene (PP) films with row lamellar structures have been utilized to produce microporous membranes. Birefringence measurements of melt‐extruded PE films show that improved film orientation can be achieved by annealing, extruding at higher speed, and using higher molecular weight polymers. Images from scanning tunneling, atomic force, and field emission scanning electron microscopy (STM, AFM, and FESEM) clearly show the lamellar structures in the melt‐extruded PE and PP films. Microscopy results also show that surface lamellar textures are more pronounced with thicker lamellae and are better aligned along the extrusion direction after annealing. X‐ray diffraction results show that the increase in film orientation can be attributed to increased lamellar perfection and orientation during annealing and also to better crystallite alignment along the machine direction with higher extrusion speed or with higher molecular weight. High‐resolution capabilities of STM, AFM, and FESEM prove to be very effective tools in elucidating lamellar structures in polymeric membrane precursors and can be used as an aid in establishing structure–process–property relationships in making microporous membranes. © 1994 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.