Abstract

Structural characterization of misfolded protein aggregates is essential to understanding the molecular mechanism of protein aggregation associated with various protein misfolding disorders. Here, we report structural analyses of ex vivo transthyretin aggregates extracted from human cardiac tissue. Comparative structural analyses of in vitro and ex vivo transthyretin aggregates using various biophysical techniques revealed that cardiac transthyretin amyloid has structural features similar to those of in vitro transthyretin amyloid. Our solid-state nuclear magnetic resonance studies showed that in vitro amyloid contains extensive nativelike β-sheet structures, while other loop regions including helical structures are disrupted in the amyloid state. These results suggest that transthyretin undergoes a common misfolding and aggregation transition to nativelike aggregation-prone monomers that self-assemble into amyloid precipitates in vitro and in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.