Abstract

We perform a theoretical prediction of the structure of amorphous YCrO3. We obtained equivalent amorphous structures by means of two independent first principles density functional theory based methods: molecular dynamics and stochastic quenching. In our structural analysis we include radial and angle distribution functions as well as calculations of bond lengths and average coordination numbers. We find Cr+3 atoms situated in slightly distorted oxygen octahedra throughout the amorphous structures and that the distribution of these octahedra is disordered. The presence of the same Cr+3 local environments that give rise to ferroelectricity in the orthorhombic perovskite structure suggests that the amorphous phase of YCrO3 may also exhibit ferroelectric properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call