Abstract
This paper sets out to acquire information on the atomic structure of the alkali-silica reaction gel by using the x-ray absorption fine structure (XAFS) technique to improve the understanding of the mechanism of expansion. The gel generates mechanical stress in the concrete, which cracks it. XAFS enables the study of the local atomic structure around each of the atomic species in the material, even in disordered structures. Analyses were made at the potassium (3608 eV) and silicon (1839 eV) absorption K-edges. Information was obtained about the local order (first and second neighbors) around the absorbing atoms and the nanoscale arrangement in the gel. The results show that most accepted structural models that are used to describe the gel are inaccurate and that a chemically inhomogeneous nanostructured material can be the better choice to explain the ASR gel structure and its chemical behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.