Abstract

In the present study, a fucoidan fraction (ANP-3) was isolated from Ascophyllum nodosum, and the combined application of desulfation, methylation, HPGPC, HPLC-MSn, FT-IR, GC–MS, NMR, and Congo red test elucidated ANP-3 (124.5 kDa) as a triple-helical sulfated polysaccharide constituted by →2)-α-Fucp3S-(1→, →3)-α-Fucp2S4S-(1→, →3,6)-β-Galp4S-(1→, →3,6)-β-Manp4S-(1→, →3,6)-β-Galp4S-(1→,→6)-β-Manp-(1→, →3)-β-Galp-(1→, α-Fucp-(1→, and α-GlcAp-(1→ residues. To better understand the relationship between the fucoidan structure of A. nodosum and protective effects against oxidative stress, two fractions ANP-6 and ANP-7 were used as contrast. ANP-6 (63.2 kDa) exhibited no protective effect against H2O2-induced oxidative stress. However, ANP-3 and ANP-7 with the same molecular weight of 124.5 kDa could protect against oxidative stress by down-regulating reactive oxygen species (ROS) and malondialdehyde (MDA) levels and up-regulating total antioxidant capability (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities. Then metabolites analysis indicated that arginine biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis metabolic pathways and metabolic biomarkers such as betaine were involved in the effects of ANP-3 and ANP-7. The better protective effect of ANP-7 compared to that of ANP-3 could be attributed to its relatively higher molecular weight, sulfate substitution and →6)-β-Galp-(1→ content, and lower uronic acid content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call