Abstract
Reduction of pertechnetate by tin(II) in the presence of dimethylglyoxime is shown, by single crystal x-ray analysis, to yield a technetium-tin-dimethylglyoxime complex in which tin and technetium are intimately connected by a triple bridging arrangement. One bridge consists of a single oxygen atom and it is hypothesized that this bridge arises from the inner sphere reduction of technetium by tin(II), the electrons being transferred through a technetium "yl" oxygen which eventually becomes the bridging atom. Two additional bridges arise from two dimethylglyoxime ligands that function as bidentate nitrogen donors towards Tc and monodentate oxygen donors towards Sn. The tin atom can thus be viewed as providing a three-pronged "cap" on one end of the Tc-dimethylglyoxime complex. The additional coordination sites around Tc are occupied by the two nitrogens of a third dimethylglyoxime ligand, making the Tc seven-coordinate. The additional coordination sites around Sn are occupied by three chloride anions, giving the Sn a fac octahedral coordination environment. From indirect evidence the oxidation states of tin and technetium are tentatively assigned to be IV and V, respectively. Since most 99mTc-radiopharmaceuticals are synthesized by the tin(II) reduction of pertechnetate, it is likely that the Sn-O-Tc linkage described in this work is an important feature of the chemistry of these species. This linkage also provides a ready rationale for the close association of tin and technetium observed in many 99mTc-radiopharmaceuticals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.