Abstract
Defects and deformation structures including 0° and 60° full dislocations, 30° Shockley partials, stacking faults and deformation twins in a nanostructured Al–Mg alloy processed by high-pressure torsion were identified using high-resolution transmission electron microscopy. The twinning mechanism previously predicted by the molecular dynamics simulation, i.e., the homogeneous mechanism involving dynamic overlapping of the stacking faults inside grains, was directly verified. A four-layer twin formed by the dynamic overlapping of four stacking faults was experimentally observed. Deformation twins and stacking faults formed by partial dislocations in ultrafine grains were experimentally confirmed. These results suggest that partial dislocation emissions from grain boundaries could become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.