Abstract

The molecular structures of UO2(salophen)L (L = DMF, DMSO) and a uranyl-salophen complex without any unidentate ligands (L) in solid and solution were investigated using single-crystal X-ray analysis and IR, 1H NMR, and UV-visible absorption spectroscopies. As a result, it was found that the uranyl-salophen complex without L is a racemic dimeric complex, [UO2(salophen)]2, in which the UO2(salophen) fragments are held together by bridging between one of the phenoxide oxygen atoms in salophen and the uranium in the other UO2(salophen) unit. Furthermore, it was spectrophotometrically demonstrated that [UO2(salophen)]2 retains its dimeric structure even in the noncoordinating solvents such as CH2Cl2 and CHCl3 and is in equilibrium with UO2(salophen)L {2UO2(salophen)L right arrow over left arrow [UO2(salophen)]2 + 2L}. The equilibrium constants and thermodynamic parameters of this equilibrium were evaluated from UV-visible absorption and 1H NMR spectral changes; log Kdim = -2.51 +/- 0.01 for L = DMF and solvent = CH2Cl2, log Kdim = -1.68 +/- 0.02 for L = DMF and solvent = CHCl3, log Kdim = -4.23 +/- 0.01 for L = DMSO and solvent = CH2Cl2, and log Kdim = -3.03 +/- 0.02 for L = DMSO and solvent = CHCl3. The kinetics of L-exchange reactions in UO2(salophen)L and enantiomer exchange of [UO2(salophen)]2 in noncoordinating solvents were also studied using NMR line-broadening method. As a consequence, it was suggested that the DMF-exchange reaction in UO2(salophen)DMF proceeds through two pathways (dissociative and associative paths) and that the predominant path of DMSO exchange in UO2(salophen)DMSO is the dissociative one. A sliding motion of the UO2(salophen) fragments was considered to be reasonable for the enantiomer-exchange mechanism of [UO2(salophen)]2. On the basis of the kinetic information for UO2(salophen)L and [UO2(salophen)]2, reaction mechanisms including the L-exchange reaction in UO2(salophen)L, the formation of [UO2(salophen)]2 from UO2(salophen)L, and the enantiomer exchange of [UO2(salophen)]2 are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.