Abstract

The formation of hollow binary ZrO 2/TiO 2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption, X-ray photoelectron spectroscopy (XPS), UV–vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO 2 and tetragonal phase of ZrO 2, and the introduction of ZrO 2 notably inhibits the growth of TiO 2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO 2/TiO 2 fibers exhibit higher surface areas (>113 m 2/g) than pure TiO 2 hollow fibers. The Pyridine adsorption on ZrO 2/TiO 2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO 2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.