Abstract

The thermal stability of a nanosized Ce(x)Zr(1-x)O2 solid solution on a silica surface and the dispersion behavior of V2O5 over Ce(x)Zr(1-x)O2/SiO2 have been investigated using XRD, Raman spectroscopy, XPS, HREM, and BET surface area techniques. Oxidative dehydrogenation of ethylbenzene to styrene was performed as a test reaction to assess the usefulness of the VOx/Ce(x)Zr(1-x)O2/SiO2 catalyst. Ce(x)Zr(1-x)O2/SiO2 (1:1:2 mol ratio based on oxides) was synthesized through a soft-chemical route from ultrahigh dilute solutions by adopting a deposition coprecipitation technique. A theoretical monolayer equivalent to 10 wt % V2O5 was impregnated over the calcined Ce(x)Zr(1-x)O2/SiO2 sample (773 K) by an aqueous wet impregnation technique. The prepared V2O5/Ce(x)Zr(1-x)O2/SiO2 sample was subjected to thermal treatments from 773 to 1073 K. The XRD measurements indicate the presence of cubic Ce0.75Zr0.25O2 in the case of Ce(x)Zr(1-x)O2/SiO2, while cubic Ce0.5Zr0.5O2 and tetragonal Ce0.16Zr0.84O2 in the case of V2O5/Ce(x)Zr(1-x)O2/SiO2 when calcined at various temperatures. Dispersed vanadium oxide induces more incorporation of zirconium into the ceria lattice, thereby decreasing its lattice size and also accelerating the crystallization of Ce-Zr-O solid solutions at higher calcination temperatures. Further, it interacts selectively with the ceria portion of the composite oxide to form CeVO4. The RS measurements provide good evidence about the dispersed form of vanadium oxide and the CeVO4 compound. The HREM studies show the presence of small Ce-Zr-oxide particles of approximately 5 nm size over the surface of amorphous silica and corroborate with the results obtained from other techniques. The catalytic activity studies reveal the ability of vanadium oxide supported on Ce(x)Zr(1-x)O2/SiO2 to efficiently catalyze the ODH of ethylbenzene at normal atmospheric pressure. The remarkable ability of Ce(x)Zr(1-x)O2 to prevent the deactivation of supported vanadium oxide leading to stable activity in the time-on-stream experiments and high selectivity to styrene are other important observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call