Abstract

Isoform-specific nitric-oxide synthase (NOS) inhibitors may prove clinically useful in reducing the pathophysiological effects associated with increased neuronal NOS (nNOS) or inducible NOS (iNOS) activity in a variety of neurological and inflammatory disorders. Analogs of the NOS substrate L-arginine are pharmacologically attractive inhibitors because of their stability, reliable cell uptake, and good selectivity for NOS over other heme proteins. Some inhibitory arginine analogs show significant isoform selectivity although the structural or mechanistic basis of such selectivity is generally poorly understood. In the present studies, we determined by x-ray crystallography the binding interactions between rat nNOS and N5-(1-imino-3-butenyl)-L-ornithine (L-VNIO), a previously identified mechanism-based, irreversible inactivator with moderate nNOS selectivity. We have also synthesized and mechanistically characterized several L-VNIO analogs and find, surprisingly, that even relatively minor structural changes produce inhibitors that are either iNOS-selective or non-selective. Furthermore, derivatives having a methyl group added to the butenyl moiety of L-VNIO and L-VNIO derivatives that are analogs of homoarginine rather than arginine display slow-on, slow-off kinetics rather than irreversible inactivation. These results elucidate some of the structural requirements for isoform-selective inhibition by L-VNIO and its related alkyl- and alkenyl-imino ornithine and lysine derivatives and may provide information useful in the ongoing rational design of isoform-selective inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.