Abstract

The synthesis of two pyrazolone derivative compounds, PYR-I(4-Acetyl-1-(4-chlorophenyl)-3-isopropyl-1H-pyrazol-5(4H)-one) and PYR-II1-(4-Chlorophenyl))-3-isopropyl-5-oxo-4,5-5-dihydro-1H-pyrazole-4-carbaldehyde, their characterization by FT-IR, NMR, UV–Vis and GC-MS techniques, and the evaluation of the keto-enol tautomerization process of the structures along with the DFT approach and spectral data were reported in this paper. Spectral findings indicated that PYR-I was stable at the keto state. The IR spectrum recorded in solid form showed that the PYR-II structure was stable in the enol state, while the NMR spectrum in the solution medium showed that it was stable in the keto state. DFT-based analyses were realized with the B3LYP hybrid functional and the 6–311++G(d,p) basis set. The modelled keto, transition and enol state molecular geometries of structures were optimized in the gas phase and different solvent media and the total energy and dipole moment values were investigated at the specified theoretical level. The possible keto-enol tautomerism mechanism of the structures was evaluated through some thermodynamic parameters such as the difference in free Gibbs energy (ΔG), enthalpy (ΔH), entropy (ΔS), and predictive tautomeric equilibrium constants (Keq), acidity constants (pKa) and percentages of tautomers at 298.15 K and 1 atm pressure. The results of these analyses based on the DFT approach indicated that the keto-enol tautomer equilibrium heavily favours the keto form for PYR-I and the enol form for PYR-II in all cases. Moreover, natural bond orbital (NBO) analysis was performed for the tautomers, and the chemical reactivity profiles of the most stable tautomers were examined with the values of frontier molecular orbital energy and some reactivity descriptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.